第二百九十五章 推开微观世界的大门!(3 / 4)

...0.338度。”

法拉第将这个数字再次记到了笔记本上,用笔尖在下头划了道梗。

接着思索片刻,开始了最后一个环节:

解封刚才被密闭的磁极。

后世高中物理没考过零分的同学应该都知道。

带电粒子在匀强磁场中如果只受到到磁场力,那么它便会做圆周偏转运动。

归纳这个现象的人叫做洛伦兹,因此这个力又叫做洛伦兹力。

值得一提的是。

这个力的正确读法应该是洛伦兹+力,也就是人名加上力。

类似的还有库仑力,安培力等等。

不过或许是洛伦兹这个名字实在太过微妙了,所以包括许多高中老师在内的师生群体,都会管它叫做洛伦磁力。

1850年的洛伦兹还有三年才会出生,自然还没法提出洛伦兹力的概念。

但另一方面。

洛伦兹是带电粒子在匀强磁场中运动现象的归纳者,他首先提出了运动电荷产生磁场和磁场对运动电荷有作用力的观点,不过却不是现象本身的发现者。

早在1822年的时候,德国人欧文斯便尝试过一个实验:

他将一个带电的小珠子放入磁场中,发现珠子会做圆弧状的运动。

洛伦兹之所以能在相关领域青史留名,所作的贡献并非只是提出一种猜想这么简单,而是因为他归纳了fqvbsv,b这么一个公式。

就像大家说小牛发现了万有引力一样。

这句话其实是一种比较普众化的解释,严格意义上来说是错误的。

但是大众又没有涉及到更深层次的必要,所以就有了这么一个比较宽泛的说法。

靠着纯理论能封神的人,在科学史上其实并不多。

因此对于法拉第他们来说。

通过调整磁场的强度,做到将磁场力与电场力互相平衡,并不算一件很困难的事情。

在施加磁场后。

法拉第又关掉了金属电极,观察起了现象。

很快。

在电磁力的作用下,射线开始偏转。

法拉第拿着放大镜以及预先做好的刻度表,记录下了偏转的图形。

接下来的事情就很简单了。

只见法拉第拿起纸笔,在纸上写下了一个公式:

q

ne。

这个公式的由来很简单。

在第一个步骤中,法拉第利用静电计测量一定时间内金属筒获得的电量q。

若进入筒内的微粒数为n,每个微粒所带的电量为e,那么q便是n和e的乘积。

接着法拉第又翻了一页书,写下了另一个公式:

n·1/2v2。

这个公式的意义同样非常简单:

经过同样时间后读出温升,若进入筒内微粒的总动能因碰撞全部转变成热能,那么上升的温度便可以对标计算出总动能。

而微粒既然是粒子,那么它的动能也便一定符合动能公式——防杠提前说一下,动能公式在1829年就提出来了。

其中的、v分别为微粒的质量和速度,乘以微粒数就是总动能。

接着只要求出最后磁极偏转的微粒运动轨道的曲率半径r,以及磁场强度h。

那么便可得:

hevv2/r。

将上面三个公式互相代入,最终可以得到一个结果:

e/(2)/h2r2q)(感谢,现在后台总算优化一些了.....)

而e/,便是........

荷质比!

所谓荷质比,指的便是带电体的电荷量和质量的比值,有些时候也叫作比荷。

这是基本粒子的重要数据之一,也是人